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Surface tensions and liquid densities of ternary mixtures consisting of water+ toluene + acetone in the
homogeneous region were determined. The pendant drop method combined with axisymmetric drop shape analysis
and with an effective temperature control of the measuring cell allowed measurements of surface tension in a
temperature range from (288 to 328) K and at pressure of 0.1 MPa. Liquid densities of ternary and binary mixtures
of this system at the same temperature range were obtained using a vibration tube densimeter. Binary and ternary
surface tensions could be predicted using ideas from the Butler model. This procedure required only surface
tension data of the pure components, surface area values (obtained from molar volume), and NRTL parameters
taken from the literature. Distribution of substances between bulk and surface could be analyzed using these
relationships.

Introduction

The ternary system water+ toluene+ acetone covers a large
range of polarity from the highly polar water to mildly polar
acetone and nonpolar toluene. Acetone+ toluene and acetone
+ water mixtures are miscible at all concentrations, and there
is also an almost temperature-independent one-phase region of
water+ toluene+ acetone. Furthermore, these solvents are of
industrial relevance. As a liquid-liquid extraction system, water
+ acetone+ toluene represent a model for many applications
such as extraction1-3 or distillation4,5 processes, and even in
the pharmaceutical industry such solvent systems were used to
crystallize organic compounds.6 Mass transfer processes through
the interface were investigated in detail for this system.7-11

The measurement of surface tension is of outstanding
importance in many scientific and technological areas. As a
fundamental parameter, surface tension is the single most
accessible experimental parameter that describes the thermo-
dynamic state, and at least implicit, it contains information on
the internal structure of a liquid interface. Apart from this
theoretical interest, a detailed understanding of the behavior of
a vapor-liquid interface, such as enrichment of one component
in a liquid surface, is important for modeling a distillation
process. On the other hand, liquid-liquid interfaces have far-
reaching practical consequences in very wide areas of applica-
tion. Surface tensions have been measured for a long time, and
collections of experimental data for pure liquids and some binary
liquid mixtures exist.12-14 A critical review reveals that sys-
tematic investigations of multicomponent systems are rather
rare,15,16especially those over a wide range of temperature and
concentration. An increasing number of applications of micro-
emulsions in industrial processes require considerable investiga-
tions of multicomponent systems, especially of such systems,
which form microemulsions when surfactants are added. High-
quality experimental data of surface and interfacial tensions also

form the basis for a successful modeling and for theoretical
calculations of interfacial properties.17-21 Therefore, further
precise measurements are urgently needed. Because of its high
flexibility and precision, the pendant drop method is the favored
experimental technique to investigate both interfacial and surface
tensions over several orders of magnitude. In this respect, it is
superior to most other commonly used experimental methods
such as Wilhelmy plate or spinning drop method.22-25 The
amount of the sample is small, and it enables the measuring of
both surface and interfacial tensions with high accuracy even
under high pressure.26-28

Experimental Section

Reagents.Both acetone ECD, tested for pesticide analysis
with a purity > 99.9 % (by GC) (residue after evaporation<
0.0002 %), and toluene for pesticide residue analysis with a
water content< 0.01 % and a purity of 99.8 % (Coulom assay)
(residue after evaporation< 0.0005 %) were supplied by Acros
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Figure 1. Phase diagram of the system toluene+ acetone+ water atT )
293.15 K, investigated mixtures,/. Connected squares,9, and crosses,×,
are experimental tie-lines obtained from the literature.41 Dotted lines mark
pseudo-binary cuts used for calculations.
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Organics (Belgium) and dried over the molecular sieves Zeosorb
A4/A3. The water was distilled twice.

Measuring Procedure.Densities of homogeneous liquid
mixtures, needed for the surface tension evaluation by numerical

solution of the Laplace equation, are determined using a
vibrating tube densimeter DMA 4500 (Fa. Anton Paar) with a
temperature control of∆T ) ( 0.01 K. The accuracy of the
measured densities is considered to be∆F ) ( 0.00005 g‚cm-3.

Table 1. Experimental Surface Tensionσ from (288.15 to 328.15) K for Mixtures of Acetone (1)+ Water (2)

σ/mN·m-1

x1 T/K ) 288.15 T/K ) 298.15 T/K ) 308.15 T/K ) 318.15 T/K ) 328.15

0.0000 73.49 71.98 70.41 68.78 67.09
0.0099 62.59 61.04 59.26 58.11 57.74
0.0500 47.85 46.14 44.78 43.74 42.86
0.0999 40.32 39.07 37.88 36.87 35.71
0.1500 35.72 34.41 33.13 32.02 30.76
0.1999 33.71 32.21 30.74 29.40 28.31
0.2999 30.60 29.35 28.08 26.98 25.68
0.4000 29.19 27.98 26.78 25.47 24.23
0.4999 28.24 27.04 25.82 24.53 23.28
0.5999 27.29 26.03 24.81 23.63 22.26
0.6999 26.71 25.44 24.25 22.94 21.73
0.7999 25.78 24.51 23.20 22.02 20.90
0.8999 25.06 23.8 22.56 21.19 20.19
1.0000 24.34 23.02 21.72 20.38 19.15

Table 2. Experimental Liquid DensitiesG from (288.15 to 328.15) K for Mixtures of Acetone (1)+ Water (2)

F/g·cm-3

x1 T/K ) 288.15 T/K ) 293.15 T/K ) 298.15 T/K ) 303.15 T/K ) 308.15 T/K ) 313.15 T/K ) 318.15 T/K ) 323.1 T/K ) 328.15

0.0000 0.99912 0.99822 0.99706 0.99567 0.99404 0.99223 0.99023 0.98801 0.98569
0.0099 0.99490 0.99387 0.99255 0.99100 0.98916 0.98726 0.98507 0.98276 0.98029
0.0500 0.98127 0.97934 0.97721 0.97489 0.97241 0.96977 0.96673 0.96310 0.95994
0.1000 0.96581 0.96290 0.95983 0.95664 0.95333 0.94991 0.94637 0.94268 0.93887
0.1500 0.95041 0.94679 0.94305 0.93923 0.93532 0.93131 0.92721 0.92300 0.91872
0.2000 0.93561 0.93154 0.92737 0.92310 0.91878 0.91437 0.90989 0.90519 0.90064
0.3000 0.90770 0.90309 0.89835 0.89354 0.88868 0.88375 0.87876 0.87370 0.86856
0.4000 0.88477 0.87981 0.87480 0.86968 0.86453 0.85933 0.85406 0.84874 0.84331
0.5000 0.86371 0.85856 0.85335 0.84807 0.84272 0.83731 0.83185 0.82632 0.82073
0.6000 0.84583 0.84053 0.83515 0.82971 0.82422 0.81866 0.81305 0.80735 0.80160
0.7000 0.83070 0.82530 0.81980 0.81425 0.80863 0.80296 0.79722 0.79142 0.78555
0.8000 0.81804 0.81256 0.80697 0.80132 0.79562 0.78984 0.78405 0.77816 0.77220
0.9000 0.80586 0.80027 0.79460 0.78888 0.78311 0.77729 0.77140 0.76546 0.75981
1.0000 0.79565 0.79004 0.78433 0.77857 0.77276 0.76691 0.76099 0.75502 0.74898

Table 3. Experimental Surface Tensionσ from (288.15 to 328.15) K for Mixtures of Acetone (1)+ Toluene (2)

σ/mN·m-1

x1 T/K ) 288.15 T/K ) 298.15 T/K ) 308.15 T/K ) 318.15 T/K ) 328.15

0.0000 28.90 27.76 26.77 25.72 24.27
0.1000 28.54 27.42 26.25 24.97 23.63
0.2000 27.86 26.78 25.78 24.75 23.48
0.3000 27.32 26.27 25.21 24.09 23.04
0.4000 26.98 25.87 24.88 23.74 22.70
0.5000 26.58 25.26 24.20 22.82 21.99
0.6000 25.91 24.69 23.59 22.67 21.06
0.6999 25.22 24.14 22.92 21.70 20.65
0.8000 24.68 23.46 22.51 21.34 19.95
0.9000 24.24 23.01 21.83 20.48 19.32
1.0000 24.34 23.02 21.72 20.38 19.15

Table 4. Experimental Liquid DensitiesG from (288.15 to 328.15) K for Mixtures of Acetone (1)+ Toluene (2)

F/g·cm-3

x1 T/K ) 288.15 T/K ) 293.15 T/K ) 298.15 T/K ) 303.15 T/K ) 308.15 T/K) 313.15 T/K) 318.15 T/K) 323.15 T/K) 328.15

0.0000 0.87141 0.86677 0.86212 0.85746 0.85278 0.84808 0.84337 0.83864 0.83390
0.1000 0.86662 0.86194 0.85719 0.85243 0.84766 0.84286 0.83804 0.83322 0.82834
0.2000 0.86143 0.85662 0.85177 0.84692 0.84206 0.83717 0.83223 0.82729 0.82232
0.3000 0.85560 0.85069 0.84576 0.84080 0.83583 0.83083 0.82582 0.82075 0.81567
0.4000 0.84950 0.84449 0.83943 0.83437 0.82930 0.82420 0.81906 0.81389 0.80870
0.5000 0.84216 0.83708 0.83196 0.82683 0.82164 0.81643 0.81119 0.80591 0.80059
0.6000 0.83494 0.82976 0.82452 0.81930 0.81400 0.80868 0.80332 0.79791 0.79248
0.6999 0.82667 0.82137 0.81605 0.81071 0.80529 0.79988 0.79439 0.78888 0.78331
0.8000 0.81743 0.81203 0.80658 0.80109 0.79556 0.79001 0.78439 0.77874 0.77301
0.9000 0.80756 0.80205 0.79647 0.79088 0.78521 0.77949 0.77374 0.76794 0.76208
1.0000 0.79565 0.79004 0.78433 0.77857 0.77276 0.76691 0.76099 0.75502 0.74898
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Surface Tension. The pendant drop method combined
with an Axisymmetric Drop Shape Analysis (ADSA)29,30 was
applied to determine surface tensions of homogeneous mixtures
in the ternary system toluene+ acetone + water. The
experimental setup has been discussed in detail in previous
papers.31,32 Pendant drop profiles were extracted from drop
images and analyzed by means of the ADSA software, which
ensures a high-quality contour extraction and a very precise
surface tension calculation by numerical solution of the Laplace
equation.

The temperature inside the sample cell was kept constant to
∆T ) ( 0.01 K. It was determined with a specially prepared
thermistor that had been calibrated against a gallium cell to allow
a temperature resolution of 0.1 mK. At a pressure of 0.1 MPa
the measuring cell was saturated with sample atmosphere, and
pendant drops were formed on a steel capillary. The drop images

were monitored as described previously.31,32 The accuracy of
the experimental surface tension measurements is considered
to be ∆σ < 0.1 mN‚m-1. The reproducibility of the surface
tension measurements is better than∆σ < 0.1 % at the 95 %
confidence level, except for surface tension values of mixtures
with a high amount of acetone atT ) 328.15 K, where the
reproducibility of the experimental data is∆σ < 0.2 % at the
95 % confidence level.

Modeling. The surface tension of a mixture can be pre-
dicted using the well-know Butler method where it is assumed

Figure 2. Experimental surface tensionσ of the binary mixture acetone
(1) + water (2) measured with the pendant drop apparatus. This work:9,
T ) 288.15 K;b, T ) 298.15 K;2, T ) 308.15 K;f, T ) 318.15 K; and
[, T ) 328.15 K. Open symbols:0, T ) 288.15 K;O, T ) 298.15 K;4,
T ) 308.15 K. All are experimental surface tension values obtained from
the literature12 for comparison. Lines are model calculations according to
eq 1: solid line,T ) 288.15 K; dashed line,T ) 298.15 K; dashed dotted
line, T ) 308.15 K; short dashed line,T ) 318.15 K; and dotted line,T )
328.15 K.

Figure 3. Experimental surface tensionσ of the binary mixture acetone
(1) + toluene (2) measured with the pendant drop apparatus. This work:
9, T ) 288.15 K;b, T ) 298.15 K;2, T ) 308.15 K;f, T ) 318.15 K;
and [, T ) 328.15 K. Lines are model calculations according to eq 1:
solid line, T ) 288.15 K; dashed line,T ) 298.15 K; dashed dotted
line, T ) 308.15 K; short dashed line,T ) 318.15 K; and dotted line,T )
328.15 K.

Table 5. NRTL Parameter Used in Determining Activity
Coefficients for Water (1) + Acetone (2)+ Toluene (3) in Equation
2 Obtained from the Literature 41

component A/K-1

12 210.6
21 377.45
13 2557.3
31 1318.8
23 -301.51
32 489.2

Figure 4. Calculated distribution of acetone between bulk and surface phase
of the system (a) acetone (1)+ water (2) and (b) acetone (1)+ toluene
(2). Lines are model calculations according to eq 1: solid line,T ) 288.15
K; dashed line,T ) 298.15 K; dashed dotted line,T ) 308.15 K; short
dashed line,T ) 318.15 K; and dotted line,T ) 328.15 K.

Figure 5. Experimental densityF (a) and surface tensionσ (b) of the system
water+ acetone+ toluene at9, T ) 288.15 K;b, T ) 298.15 K;2, T )
308.15 K;f, T ) 318.15 K; and[, T ) 328.15 K for the binary mixtures.
Open symbols:0, T ) 288.15K;O, T ) 298.15 K;4, T ) 308.15 K;g,
T ) 318.15 K; and], T ) 328.15 K show the values for ternary mixtures
inside the phase prism.
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that the surface can be treated as a separate phase. Addi-
tionally, the nonideality of both the bulk phase and the
surface phase can be described by the same activity coef-
ficient model. This method had been applied to quite different
types of systems, like non-electrolyte mixtures,33-35

ionic solutions,36-38 or metal-containing systems.39,40 The
surface tension of a mixture containingk components is given
by

whereσi is the surface tension of the pure componenti; Ai is
the surface area of moleculei; NA denotes Advogadro’s number;
and xi,B and xi,S are the mole fractions of componenti in the
bulk and surface phases, respectively. The activity coefficients,
γi, of our binary and ternary systems were calculated using the
NRTL equation:

with parameters taken from the literature.41 The surface areaAi

is given by

where Vi is the temperature-dependent molar volume of
componenti. The surface mole fractions of componenti can
be calculated by applying the standard phase-equilibrium
calculation procedure. Finally, the surface tension of the mixture
is represented by eq 1. This method allows the prediction of
the surface tension and the surface composition based on the
surface tensions of the pure components and the bulk-phase
properties of the mixture.

Figure 6. Experimental surface tensionσ of the system water (1)+ acetone
(2) + toluene (3) at pseudo-binary cuts X3/X1 ) z ) 9 (a),z ) 3/7 (b), and
z ) 0.01 (c) at9, T ) 288.15 K;b, T ) 298.15 K;2, T ) 308.15 K;f,
T ) 318.15 K; and[, T ) 328.15 K. Lines are model calculations according
to eq 1: solid line,T ) 288.15 K; dashed line,T ) 298.15 K; dashed dotted
line, T ) 308.15 K; short dashed line,T ) 318.15 K; and dotted line,T )
328.15 K.
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Figure 7. Calculation results of the distribution of (a) water (1), (b) toluene
(3), and (c) acetone (2) between bulk and surface phase at a pseudo-binary
cut of z ) 4 using eq 1: solid line,T ) 288.15 K; dashed line,T ) 298.15
K; dashed dotted line,T ) 308.15 K; short dashed line,T ) 318.15 K; and
dotted line,T ) 328.15 K.
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Results and Discussion

Mixtures of the ternary system water (1)+ acetone (2)+
toluene (3) in the miscible region and of the binary homoge-
neous systems water+ acetone and acetone+ toluene were
systematically investigated. We determined liquid densities at
nine temperatures and surface tensions at five temperatures
ranging fromT ) 288.15 K toT ) 328.15 K. Figure 1 shows
the ternary phase diagram with the miscibility gap together with
tie line (squares, crosses connected with solid lines) composi-
tions atT ) 293.15 K obtained from literature.41 Dashed lines
in the phase diagram mark the investigation strategy used to
study the homogeneous region. Ratios of toluene/water were
kept constant, and the amount of acetone was systematically
modified with the ratioz ) xtoluene/xwater) 9, 4, 1, 3/7, 1/4, 0.1,
and 0.01, respectively. Stars mark compositions of single
samples.

Binary Mixtures. The starting point of our study was the
surface tension behavior of the binary mixtures. Water and
toluene are almost immiscible, so we began with liquid mixtures

of acetone with water and with toluene. Experimental data of
the system acetone+ water are reported in Tables 1 and 2.
Table 1 contains the surface tension data. The corresponding
liquid densities used for the evaluation of surface tensions by
ADSA are given in Table 2. Tables 3 and 4 present the
corresponding data of the mixtures acetone+ toluene. Figure
2 shows the results of our surface tension measurements at five
different temperatures studied over the whole concentration
range. For comparison, open symbols mark experimental data
at T ) (288.15, 298.15, and 308.15) K taken from the
literature.12 The lines are predicted results of our modeling using
eq 1 and NRTL parameters listed in Table 5. Having in mind
that the modeling results are pure predictions based on surface
tensions of the pure components and NRTL parameters taken
from the literature,41 the theoretical results show an excellent
agreement with the experimental data. The steep decrease of
the surface tension of pure water by adding a small amount of
acetone could well be described with an expression based on
Butler’s equation.

Table 6. Experimental Liquid DensitiesG from (288.15 to 328.15) K for Ternary Mixtures of Water (1) + Acetone (2)+ Toluene (3); z ) x3/x1

F/g·cm-3

x1 x2 T/K ) 288.15 T/K ) 293.15 T/K ) 298.15 T/K ) 303.15 T/K ) 308.15 T/K ) 313.15 T/K ) 318.15 T/K ) 323.15 T/K ) 328.15

z ) 9
0.0301 0.7000 0.82717 0.82183 0.81646 0.81106 0.80565 0.80014 0.79464 0.78904 0.78340
0.0400 0.6001 0.83539 0.83015 0.82488 0.81958 0.81426 0.80889 0.80347 0.79800 0.79251
0.0505 0.5003 0.84321 0.83805 0.83288 0.82767 0.82243 0.81716 0.81185 0.80648 0.80108

z ) 4
0.0150 0.9266 0.80478 0.79916 0.79354 0.78786 0.78215 0.77640 0.77059 0.76472 0.75881
0.0402 0.8000 0.81699 0.81154 0.80605 0.80051 0.79493 0.78932 0.78365 0.77792 0.77214
0.0605 0.6996 0.82690 0.82156 0.81615 0.81071 0.80523 0.79973 0.79418 0.78855 0.78289
0.0701 0.6503 0.83143 0.82613 0.82078 0.81538 0.80994 0.80447 0.79894 0.79337 0.78776

z ) 1
0.0505 0.8993 0.80671 0.80112 0.79550 0.78985 0.78411 0.77834 0.77251 0.76662 0.76069
0.0994 0.8001 0.81733 0.81181 0.80628 0.80069 0.79507 0.78938 0.78365 0.77784 0.77199
0.1498 0.7002 0.82773 0.82230 0.81684 0.81134 0.80578 0.80021 0.79453 0.78883 0.78304
0.1748 0.6500 0.83293 0.82757 0.82217 0.81670 0.81119 0.80563 0.80002 0.79435 0.78861

z ) 3/7
0.0699 0.9000 0.80667 0.80106 0.79543 0.78974 0.78399 0.77821 0.77236 0.76646 0.76040
0.1749 0.7499 0.82321 0.81770 0.81220 0.80662 0.80101 0.79532 0.78959 0.78376 0.77790
0.2450 0.6500 0.83470 0.82931 0.82389 0.81841 0.81289 0.80730 0.80166 0.79595 0.79019
0.2803 0.5997 0.84073 0.83542 0.83007 0.82466 0.81920 0.81368 0.80810 0.80244 0.79674

z ) 1/4
0.1591 0.8010 0.81753 0.81201 0.80641 0.80076 0.79508 0.78932 0.78352 0.77767 0.77175
0.2337 0.7077 0.82841 0.82299 0.81743 0.81186 0.80624 0.80057 0.79485 0.78902 0.78318
0.3137 0.6077 0.84041 0.83507 0.82969 0.82427 0.81878 0.81322 0.80762 0.80194 0.79617
0.3677 0.5402 0.84940 0.84419 0.83893 0.83361 0.82824 0.82279 0.81729 0.81174 0.80615

z ) 0.1
0.1089 0.8800 0.81733 0.81181 0.80628 0.80069 0.79507 0.78938 0.78365 0.77784 0.77199
0.2001 0.7798 0.82026 0.81474 0.80917 0.80354 0.79787 0.79213 0.78636 0.78048 0.77454
0.2998 0.6702 0.83435 0.82897 0.82348 0.81791 0.81235 0.80670 0.80102 0.79523 0.78940
0.4007 0.5593 0.84998 0.84473 0.83941 0.83404 0.82863 0.82314 0.81759 0.81197 0.80628

z ) 0.01
0.1488 0.8497 0.81217 0.80659 0.80096 0.79527 0.78954 0.78375 0.77790 0.77198 0.76602
0.3965 0.5995 0.84621 0.84090 0.83554 0.83011 0.82463 0.81908 0.81348 0.80780 0.80207
0.4942 0.5007 0.86302 0.85784 0.85263 0.84733 0.84198 0.83660 0.83109 0.82555 0.81995
0.5939 0.4000 0.88307 0.87807 0.87306 0.86797 0.86280 0.85760 0.85233 0.84699 0.84158

z ) 0.1056
0.4725 0.4776 0.86322 0.85804 0.85282 0.84753 0.84218 0.83678 0.83131 0.82578 0.82010

z ) 1.4624
0.0891 0.7806 0.81931 0.81390 0.80838 0.80281 0.79721 0.79156 0.78586 0.78010 0.77429

z ) 1.993
0.1001 0.7004 0.82741 0.82203 0.81659 0.81111 0.80559 0.80003 0.79443 0.78876 0.78303

z ) 1.994
0.1005 0.6991 0.82748 0.82209 0.81667 0.81118 0.80570 0.80012 0.79451 0.78884 0.78311

z ) 14.3034
0.0323 0.5057 0.84250 0.83737 0.83220 0.82702 0.82179 0.81655 0.81123 0.80589 0.80052
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Surface tension values of acetone+ toluene mixtures do not
show such strong concentration dependence as depicted in
Figure 3. Here, the experimental data were also compared with
model calculations using eq 1. At higher temperatures, larger
deviations in the experimental data were found as shown in the
lowest curve atT ) 328.15 K. At this temperature, mixtures of
acetone+ toluene have a rather high vapor pressure.

With the help of eq 1, we were able to describe the
distribution of the mixture components between surface and bulk
phase. In both binary mixtures acetone is enriched in the surface
phase (see Figure 4). This effect is more pronounced in the
system acetone+ water as compared to the behavior in acetone
+ toluene mixtures. This theoretical result can be explained by
the different vapor pressure difference of the pure component.
The vapor pressure difference in the system acetone+ water is
slightly higher than that of the components in the system acetone
+ toluene. This can cause a different segregation behavior.

Ternary Mixtures.To provide a survey on the concentration
dependence of both liquid densities and surface tensions in the

ternary mixtures of the system toluene+ acetone+ water, the
experimental data are given as 3D plots in Figure 5. Figure 5a
shows liquid densities at five different temperatures, and Figure
5b depicts the corresponding results of the surface tension
measurements; solid symbols represent the binary data, and open
symbols represent the ternary data at the respective temperature.
The steep increase of surface tension in the water-rich region
results in a very asymmetric ternary surface tension area.
However, both concentration and temperature dependence in
this ternary system are not easy to be presented graphically.
Therefore, we designed an investigation strategy (Figure 1) to
prepare pseudo binary mixtures whose results can easily be
drawn in ax-y plot. We selected ratios of constant toluene/
water compositionz ) xtoluene/xwaterwith the amount of acetone
systematically varying from the pure liquid to the miscibility
gap. Highz values characterize samples with high content of
toluene, and lowz values represent samples with high water
content. Tables 6 and 7 summarize all experimental results for
the ternary system. In Table 6 the liquid densities are given for

Table 7. Experimental Surface Tensionσ from (288.15 to 328.15) K for Ternary Mixtures of Water (1) + Acetone (2)+ Toluene (3); z ) x3/x1

σ/mN·m-1

x1 x2 T/K ) 288.15 T/K ) 298.15 T/K ) 308.15 T/K ) 318.15 T/K ) 328.15

z ) 9
0.0301 0.7000 25.40 24.26 23.18 21.81 20.75
0.0400 0.6001 25.96 24.80 23.66 22.50 21.40
0.0505 0.5003 26.61 25.51 24.22 23.03 21.79

z ) 4
0.0150 0.9266 24.25 23.07 21.65 20.58 19.32
0.0402 0.8000 25.09 24.01 22.78 21.61 20.61
0.0605 0.6996 25.41 24.26 22.83 21.74 21.00
0.0701 0.6503 25.78 24.48 23.33 22.21 21.10

z ) 1
0.0505 0.8993 24.09 22.74 21.73 20.49 19.48
0.0994 0.8001 24.80 23.65 22.39 21.11 20.32
0.1498 0.7002 25.82 24.40 23.41 22.41 20.86
0.1748 0.6500 25.85 24.85 23.59 22.41 21.13

z ) 3/7
0.0699 0.9000 24.22 23.04 21.88 20.40 19.50
0.1749 0.7499 25.36 24.20 22.91 21.72 20.81
0.2450 0.6500 25.93 24.70 23.62 22.47 21.30
0.2803 0.5997 26.24 25.13 24.00 22.69 21.18

z ) 1/4
0.1591 0.8010 25.10 23.87 22.61 21.31 20.23
0.2337 0.7077 25.69 24.56 23.35 22.14 20.79
0.3137 0.6077 26.17 25.03 23.92 22.61 21.41
0.3677 0.5402 26.13 24.98 23.93 22.65 19.41

z ) 0.1
0.1089 0.8800 24.43 23.31 21.93 20.80 19.68
0.2001 0.7798 25.01 23.69 22.49 21.42 20.18
0.2998 0.6702 25.79 24.55 23.34 22.31 20.96
0.4007 0.5593 26.45 25.18 24.17 23.02 21.76

z ) 0.01
0.1488 0.8497 24.66 23.44 22.31 21.07 19.90
0.3965 0.5995 26.24 25.19 24.03 22.73 21.04
0.4942 0.5007 27.23 26.05 24.86 23.57 22.06
0.5939 0.4000 27.71 26.66 25.51 23.73

z ) 0.1056
0.4725 0.4776 26.97 25.73 24.62 23.39

z ) 1.4624
0.0891 0.7806 25.26 23.98 22.72 21.40 20.59

z ) 1.993
0.1001 0.7004 25.66 24.49 23.30 22.04 20.98

z ) 1.994
0.1005 0.6991 25.84 24.59 23.50 22.30 21.09

z ) 14.3034
0.0323 0.5057 26.65 25.56 24.72 23.60 22.32
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the ternary mixtures at nine different temperatures, and Table
7 contains the surface tensions at five different temperatures
classified according to theirz ratios.

To analyze and discuss the results three typical sample ratios
are selected, and the experimental data are compared with the
prediction. Figure 6a shows pseudo-binary mixtures with a
concentration ratioz) 9 (i.e., a high amount of toluene), Figure
6b gives the results for the ratioz) 3/7, and Figure 6c represents
water-rich samples with a ratioz ) 0.1. The Butler model is
able to describe the experimental data at all ratios, especially
those graphs that show a clear curvature with high amounts of
water.

Enrichment processes within the vapor-liquid interface can
also be discussed from the results of eq 1. For all three
components in a ternary mixture, we obtain the distribution
between interface region and bulk phase by calculating the
surface mole fractionxi,S for a given bulk-phase mole fraction
xi,B. A ratio of xi,s/xi,B ) 1 yields no surface active enrichment/
depletion and is used as a reference. Two pseudo-binary cuts
at z ) 4 andz ) 0.01 are discussed. At a constant ratioz ) 4
the relative enrichment of all three components are depicted in
Figure 7. At all temperatures water is considerably depleted of
the interface region (Figure 7a) over the whole concentration
range. In contrast, acetone is always enriched in the surface
region (Figure 7c), when compared with the straight linexi,S/
xi,B ) 1 of the neutral behavior. Toluene, having a vapor pressure
between that of water and acetone, shows an interesting

enrichment/depletion behavior. At a relative high toluene
concentration (z ) 4), it could be found in the bulk phase too
(see Figure 7b). Water-rich pseudo-binary cuts with a ratioz )
0.01 are shown in Figure 8. At a mole fractionxtoluene,B) 0.002
the enrichment/depletion behavior changes dramatically. At
lower concentration toluene molecules remain in the liquid bulk
phase, showing no tendency to enter the interfacial region. At
higher toluene concentration (xtoluene,B ) 0.006) however, the
molecules seem to be enriched in the surface region (Figure
8b). In this situation water always prefers to stay in the liquid
bulk phase, thus depleting the surface layer (Figure 8a). Caused
by the strong repulsive interaction between water and toluene,
which finally leads to demixing, at higher concentrations the
toluene molecules prefer the interface region (see Figure 8b).
The higher vapor pressure of acetone in comparison to toluene
leads to a considerable increase of the acetone surface concen-
tration showing a large enrichment at high acetone concentra-
tions in the surface (Figure 8c). The enrichment behavior of
ternary systems results from an interplay between the interac-
tions in the liquid phase and the vapor pressure of the pure
components.

Figure 8. Calculation results of the distribution of (a) water (1), (b) toluene
(3), and (c) acetone (2) between bulk and surface phase at a pseudo-binary
cut z ) 0.01 using eq 1: solid line,T ) 288.15 K; dashed line,T ) 298.15
K; dashed dotted line,T ) 308.15 K; short dashed line,T ) 318.15 K; and
dotted line,T ) 328.15 K.

Table 8. Average Relative Error, Defined by (%) ) [(∑i)1
N (σi

exp -
σi

cal)/σi
exp)/{N}] × 100

system T/K points
avg relative
error (%)

acetone+ water 288.15 12 2.89
298.15 12 2.53
308.15 12 2.07
318.15 12 1.40
328.15 12 1.85

acetone+ toluene 288.15 9 0.58
298.15 9 0.40
308.15 9 0.49
318.15 9 0.74
328.15 9 1.18

water (1)+ acetone (2)+ toluene (3)
z ) x3/x1

z ) 9 288.15 4 2.04
298.15 4 0.36
308.15 4 0.39
318.15 4 0.67
328.15 4 0.42

z ) 4 288.15 5 0.97
298.15 5 0.66
308.15 5 0.95
318.15 5 0.83
328.15 5 0.77

z ) 1 288.15 5 1.73
298.15 5 1.44
308.15 5 1.10
318.15 5 1.29
328.15 5 0.68

z ) 3/7 288.15 5 1.53
298.15 5 0.98
308.15 5 0.81
318.15 5 1.45
328.15 5 0.81

z ) 1/4 288.15 5 1.33
298.15 5 0.76
308.15 5 0.64
318.15 5 1.28
328.15 4 0.68

z ) 0.1 288.15 5 1.24
298.15 5 0.99
308.15 5 1.20
318.15 5 1.02
328.15 5 0.91

z ) 0.01 288.15 5 1.83
298.15 5 2.08
308.15 5 1.87
318.15 5 0.90
328.15 4 0.94
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In order to discuss the quality of the suggested model in Table
8, the derivations between the experimental data and the
predicted surface tension are listed. The largest derivation was
found for the system acetone+ water at 288.15 K.

Conclusions

Surface tensions and liquid densities of the ternary system
water+ acetone+ toluene versus compositions in the homo-
geneous region at five temperatures fromT ) 288.15 K toT )
328.15 K were experimentally determined using a pendant drop
apparatus. Vibration tube densimeter was used to obtain liquid
densities at nine temperatures from (288.15 to 328.15) K. Binary
and ternary surface tensions could be well-predicted by the
Butler equation. The distribution of the substances between bulk
and surface could be analyzed. The selective enrichment in the
surface phase for ternary systems depends strongly on the
interactions and the vapor pressure of the pure components.
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